Publications

Bazhenov, N., Mustafa, M., Ospichev, S., Rogers semilattices of punctual numberings, Mathematical Structures in Computer Science, 2022, in press, DOI

Bazhenov, N., Mustafa, M., Ospichev, S., San Mauro, L., Approximating Approximate Reasoning: Fuzzy Sets and the Ershov Hierarchy, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, 13039 LNCS, pp. 1–13, DOI

Bazhenov, N.A., Mustafa, M., Ospichev, S.S., On Universal Pairs in the Ershov Hierarchy, Siberian Mathematical Journal, 2021, 62(1), pp. 23–31, DOI

Bazhenov, N.A., Mustafa, M., Ospichev, S.S., Yamaleev, M.M., Numberings in the Analytical Hierarchy, Algebra and Logic, 2020, 59(5), pp. 404–407, DOI

Bazhenov, N., Mustafa, M., Ospichev, S., Semilattices of Punctual Numberings, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, 12337 LNCS, pp. 1–12, DOI

N. Bazhenov, S. Ospichev, M. Yamaleev, Isomorphism types of Rogers semilattices in the analytical hierarchy, to appear arXiv

S. Goncharov, S. Ospichev, D. Ponomaryov, D. Sviridenko, The expressiveness of looping terms in the semantic programming, Siberian Electronic Mathematical Reports, 2020, Vol.~17, pp. 380394. arXiv DOI

S. Ospichev, Friedberg numberings of families of partial computable functionals, Siberian Electronic Mathematical Reports,2019, Vol. 16, pp. 331339 (in Russian) DOI

N. Bazhenov, M. Mustafa, S. Ospichev, Bounded Reducibility for Computable Numberings, LNCS, 2019, Vol. 11558, pp. 96107 DOI

S. Ospichev, D. Ponomaryov, On the complexity of formulas in semantic programming, Siberian Electronic Mathematical Reports, 2018, Vol. 15, pp. 987995 DOI

S. Ospichev, Computable Families of Sets in the Ershov Hierarchy Without Principal Numberings, Journal of Mathematical Sciences, 2016, Vol.215, Issue 4, pp. 529536 DOI

S. Ospichev, Friedberg Numberings in the Ershov hierarchy, Algebra and Logic, 2015, v. 54, Issue 4, pp. 283285 DOI

S. Ospichev, Infinite family of $\Sigma_a^{1 }$sets with a unique computable numbering, Journal of Mathematical Sciences, 2013, Vol. 188, Issue 4, pp. 449451. DOI

S. Ospichev, Properties of numberings in various levels of the Ershov hierarchy, Journal of Mathematical Sciences, 2013, Vol. 188, Issue 4, pp. 441448.DOI

S. Ospichev, Families with Infinite Rogers Semilattices in Ershov Hierarchy, 7th Conference on Coputability in Europe, CiE 2011, booklet, Sofia, 2011, pdf

S. Ospichev, Computable family of {$\Sigma^{1}_a$}sets without Friedberg numberings, 6th Conference on Computability in Europe, CiE 2010, booklet, Ponta Delgada, Azores, 2010, pp. 311315. pdf