Publications
-
Bazhenov, N., Mustafa, M., Ospichev, S., Rogers semilattices of punctual numberings, Mathematical Structures in Computer Science, 2022, in press, DOI
-
Bazhenov, N., Mustafa, M., Ospichev, S., San Mauro, L., Approximating Approximate Reasoning: Fuzzy Sets and the Ershov Hierarchy, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, 13039 LNCS, pp. 1–13, DOI
-
Bazhenov, N.A., Mustafa, M., Ospichev, S.S., On Universal Pairs in the Ershov Hierarchy, Siberian Mathematical Journal, 2021, 62(1), pp. 23–31, DOI
-
Bazhenov, N.A., Mustafa, M., Ospichev, S.S., Yamaleev, M.M., Numberings in the Analytical Hierarchy, Algebra and Logic, 2020, 59(5), pp. 404–407, DOI
-
Bazhenov, N., Mustafa, M., Ospichev, S., Semilattices of Punctual Numberings, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, 12337 LNCS, pp. 1–12, DOI
-
N. Bazhenov, S. Ospichev, M. Yamaleev, Isomorphism types of Rogers semilattices in the analytical hierarchy, to appear arXiv
-
S. Goncharov, S. Ospichev, D. Ponomaryov, D. Sviridenko, The expressiveness of looping terms in the semantic programming, Siberian Electronic Mathematical Reports, 2020, Vol.~17, pp. 380-394. arXiv DOI
-
S. Ospichev, Friedberg numberings of families of partial computable functionals, Siberian Electronic Mathematical Reports,2019, Vol. 16, pp. 331-339 (in Russian) DOI
-
N. Bazhenov, M. Mustafa, S. Ospichev, Bounded Reducibility for Computable Numberings, LNCS, 2019, Vol. 11558, pp. 96-107 DOI
-
S. Ospichev, D. Ponomaryov, On the complexity of formulas in semantic programming, Siberian Electronic Mathematical Reports, 2018, Vol. 15, pp. 987-995 DOI
-
S. Ospichev, Computable Families of Sets in the Ershov Hierarchy Without Principal Numberings, Journal of Mathematical Sciences, 2016, Vol.215, Issue 4, pp. 529-536 DOI
-
S. Ospichev, Friedberg Numberings in the Ershov hierarchy, Algebra and Logic, 2015, v. 54, Issue 4, pp. 283-285 DOI
-
S. Ospichev, Infinite family of $\Sigma_a^{-1 }$-sets with a unique computable numbering, Journal of Mathematical Sciences, 2013, Vol. 188, Issue 4, pp. 449-451. DOI
-
S. Ospichev, Properties of numberings in various levels of the Ershov hierarchy, Journal of Mathematical Sciences, 2013, Vol. 188, Issue 4, pp. 441-448.DOI
-
S. Ospichev, Families with Infinite Rogers Semilattices in Ershov Hierarchy, 7th Conference on Coputability in Europe, CiE 2011, booklet, Sofia, 2011, pdf
-
S. Ospichev, Computable family of {$\Sigma^{-1}_a$}-sets without Friedberg numberings, 6th Conference on Computability in Europe, CiE 2010, booklet, Ponta Delgada, Azores, 2010, pp. 311-315. pdf