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Abstract. We construct a computable family of Σ−1
a –sets without Σ−1

α –
computable Friedberg numberings, where a is a notation for a con-
structive ordinal. We also construct a family of Σ−1

a –sets without Σ−1
a –

computable Friedberg numberings which have Σ−1
b –computable Fried-

berg numbering, where b is a notation for the successor of |a|O.
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1 Main Results

One of the main questions of the theory of computable numberings is the study of
extremal elements in Roger semilattice. First results in this area were obtained by
Friedberg. He proved the existence of a single–valued computable numbering of
the family of all computably enumerable sets. Later on it was shown in [1] that
there exists a Σ−1

2 –computable family of Σ−1
2 –sets without Σ−1

2 –computable
Friedberg numbering.

In this paper we generalize this result to all constructive ordinals.
Now we give the original Ershov’s definition of the class Σ−1

a , where a is a
notation for a constructive ordinal.

Definition 1 ([2]). Let P (x, y) be a computable partial ordering on ω. A uni-
formly c.e. sequence {Rx} of c.e. sets is called P–sequence if for all x and y the
condition x ≤P y implies Rx ⊆ Ry.

Hereinafter we will use Kleene ordinal notation system (O, <o). For every
a ∈ O, |a|o is the ordinal α whose O–notation is a. We also define a parity
function e(x): for all a ∈ O, e(a) = 1 if |a|O is even and e(a) = 0 if |a|O is odd.

Definition 2. For every a ∈ O, we define the operation Sa that takes a–sequences
{Rx}x<oa to subsets of ω:

Sa(R) = {z|∃x <o a(z ∈ Rx & e(x) 6= e(a) & ∀y <o x(z /∈ Ry))}
For a ∈ O, the class Σ−1

a is defined as the class of all sets Sa(R), where R =
{Rx}x<oa is any a–sequence of c.e. sets.

In this paper we will use another definition of Σ−1
a –sets.



Definition 3. For all a ∈ O, a set A is a Σ−1
a –set if there exist total computable

function f(x, s) and partial computable function g(x, s) such that for all x ∈ ω
the following conditions are satisfied:
1. A(x) = lim

s
f(x, s), f(x, 0) = 0

2. g(x, s) ↓→ g(x, s + 1) ↓≤o g(x, s) <o a
3. f(x, s) 6= f(x, s + 1) → g(x, s + 1) ↓6= g(x, s).

This definition is not well-known and our next step is proving of equivalence of
given definitions.
Lemma 1. Definitions 2 and 3 are equivalent.

Proof. “⇐”. Take a computable function f(x, s) and a partial computable func-
tion g(x, s) as in the definition. Define an a–sequence of c.e. sets {Rb} as follows.
For all b <o a, let

Rb =
⋃

c<ob

Rc ∪ {x|(∃s)(∃t ≤o b)(f(x, s) = |e(b)− e(a)| & g(x, s) = t)},

A = {x|∃b <o a(x ∈ Rb & e(b) 6= e(a) & ∀c <o b(x /∈ Rc))}.
“⇒”. We have an a–sequence {Rb} of c.e. sets. Construct a total computable
function f(x, s) and a partial computable function g(x, s). Since {Rb} is a uni-
formly c.e. sequence, there exists a uniformly computable sequence {Rs

b}s∈ω of
computable sets R0

b ⊆ R1
b ⊆ R2

b ⊆ ... such that for all b <o a holds Rb =
⋃

s∈ω
Rs

b.

Define an auxiliary function h(x, s) as follows:
1. h(x, 0) = 0;
2. (a) if x ∈ Rs

h(x,s) or h(x, s) = b, where b is a notation for the predecessor of
|a|o, then we let h(x, s + 1) = 0;

(b) if x /∈ Rs
h(x,s) then h(x, s + 1) = µc<oa(h(x, s) <o c).

Now we can describe constructions for f(x, s) and g(x, s):
1. f(x, 0) = 0, g(x, 0) is undefined;
2. (a) if x ∈ Rs

h(x,s) then f(x, s + 1) = |e(h(x, s))− e(a)|, g(x, s + 1) = h(x, s);
(b) if x /∈ Rs

h(x,s) then f(x, s + 1) = f(x, s), g(x, s + 1) = g(x, s).

It is easy to see that functions f(x, s) and g(x, s) satisfy all the properties of
Definition 3. Lemma is complete.

Definition 4 ([3]). A numbering ν is said to be Σ−1
a –computable if there exist

a total computable function f(n, x, s) and a partial computable function g(n, x, s)
such that for all n, x ∈ ω holds
1. ν(n, x) = lim

s
f(n, x, s), f(n, x, 0) = 0;

2. g(n, x, s) ↓→ g(n, x, s + 1) ↓≤o g(n, x, s) <o a;
3. f(n, x, s) 6= f(n, x, s + 1) → g(n, x, s + 1) ↓6= g(n, x, s).

Now we can formulate the main result of this paper.
Theorem 1. For any a ∈ O, there exists a Σ−1

a –computable family without
Σ−1

a –computable Friedberg numberings.
In the remaining part of the paper, we prove this theorem and its corollary.



2 Proof of Theorem

Firstly, we prove a useful technical result:

Lemma 2. There exists an effective list of all Σ−1
a –computable numberings.

Proof. Let Ξ−1
a be an m–universal set for the family of all Σ−1

a –sets (the exis-
tence of such sets is shown, for example, in [4]). Then for all n ∈ ω, κ−1

n (Ξ−1
a )

is a Σ−1
a –set, where κ is Kleene’s numbering of all partial computable func-

tions, and for each Σ−1
a –set A there exists a n with the property A = κ−1

n (Ξ−1
a ).

Moreover, for any Σ−1
a –computable numbering ν there exists a total computable

function f with property ν = κ−1
f(n)(Ξ

−1
a ) and for each total computable func-

tion f , κ−1
f(n)(Ξ

−1
a ) is a Σ−1

a –computable numbering. Let φe(n) be some universal
function for class of all partial computable functions. Define µe(n) as follows:

µe(n) = κ−1
φe(n)(Ξ

−1
a ).

If φe(n) is undefined, then κφe(n)(x) is undefined for all x ∈ ω and µe(n) = ∅.
It is easy to see, that µe(n) will be effective list of all Σ−1

a –computable number-
ings. Lemma is complete.

Proceed to the proof of theorem. Fix an effective list of all Σ−1
a –computable

numberings µe of Σ−1
a –sets and build a Σ−1

a –computable numbering ν of Σ−1
a –

sets. It follows from the definitions that to define a numbering ν, we should
construct a total computable function f(n, x, s) and a partial computable func-
tion g(n, x, s). Since µe is Σ−1

a –computable, there are a list of total computable
functions φe(n, x, s) and a list of partial computable functions ψe(n, x, s) such
that each pair 〈φe, ψe〉 defines a numbering µe.

Now we can define f and g.
For all n, x ∈ ω, let f(n, x, 0) = 0 and g(n, x, 0) ↑.
For each e ∈ ω we are waiting for a stage s′ and distinct indices i and j

such that φe(i, 2e, s′) = 1 and φe(j, 2e + 1, s′) = 1. While s′ does not occur,
for each stage s (0 < s < s′) we let f(2e, 2e, s) = f(2e + 1, 2e + 1, s) = 1 and
g(2e, 2e, s) = g(2e + 1, 2e + 1, s) = 1.

For all e′ 6= 2e, 2e+1 we let f(e′, 2e, s) = f(e′, 2e+1, s) = 0 and g(e′, 2e, s) ↑,
g(e′, 2e + 1, s) ↑.

When the required s′ occurs, for all s ≥ s′ we put f(2e, 2e, s) = f(2e+1, 2e+
1, s) = 0, g(2e, 2e, s) = g(2e + 1, 2e + 1, s) = 0, and for all e′ 6= 2e, 2e + 1 we put
f(e′, 2e, s) = sg[φe(i, 2e, s)], f(e′, 2e + 1, s) = sg[φe(j, 2e + 1, s)], g(e′, 2e, s) =
ψe(i, 2e, s) g(e′, 2e + 1, s) = ψe(j, 2e + 1, s).

Comments to the construction.

1. At the very beginning, we enumerate 2e in ν(2e) and 2e+1 in ν(2e+1) (But
if the stage s′ we are waiting for equals 1, we do not enumerate elements in
ν(2e) and in ν(2e + 1); these sets remain empty forever).

2. We are waiting for a stage s′ and distinct indices i, j, such that 2e ∈ µe,s′(i)
and 2e + 1 ∈ µe,s′(j).



3. We remove elements 2e 2e + 1 from sets ν(2e) and ν(2e + 1) respectively.
4. For all s ≥ s′ and all e′ 6= 2e, 2e + 1, if an element 2e will be extracted from

set µe,s(i) then we add the element 2e to the set ν(e′). If 2e ∈ µe,s(i) holds
again then 2e should be extracted from ν(e′). The same actions should be
performed for the element 2e + 1 and the set µe,s(j).

Let S be a family of Σ−1
a –sets enumerated by ν. Suppose that µe enumerates

a family T . If there are no stage s′ and indices i, j satisfying the conditions
described in the construction then T does not contain distinct sets containing
elements 2e and 2e + 1, although, there are such sets in S. By this, S 6= T . If
such a stage s′ and indices i, j exist then the following two cases may occur:

1. At least one of the conditions 2e ∈ µe(i) and 2e + 1 ∈ µe(j) is satisfied.
Suppose that 2e ∈ µe(i). Then in S there are no sets containing 2e, but
there are such sets in T , for example, µe(i).

2. Both 2e 6∈ µe(i) and 2e + 1 6∈ µe(j) are true. Then only one set ν(2e) =
ν(2e + 1) in S does not contain {2e, 2e + 1}. It follows from S = T that
µe(i) = µe(j) for distinct indices i and j. Thus, µe cannot be a Friedberg
numbering.

Some modifications of this construction enable us to produce a family of
Σ−1

a –sets with more complicated structure.

Corollary 1. There is a computable family of Σ−1
a –sets without Σ−1

a –computable
Friedberg numbering which has a Σ−1

b –computable Friedberg numbering, where b
is a notation for the successor of |a|O.

Again, to produce a numbering ν, we construct a total computable function
f(n, x, s) and a partial computable function g(n, x, s).

Describe a construction.
For all n, x ∈ ω, we let f(n, x, 0) = 0 and g(n, x, 0) ↑.
For each e ∈ ω, let f(3e + 2, 3e + 2, s) = 1 and g(3e + 2, 3e + 2, s) = 0, for

each s > 0.
We are waiting for a stage s′ and distinct indices i and j such that φe(i, 3e, s′) =

1 and φe(j, 3e + 1, s′) = 1. While such an s′ did not occur, for each stage s
(0 < s < s′) we put f(3e, 3e, s) = f(3e + 1, 3e + 1, s) = 1 and g(3e, 3e, s) =
g(3e + 1, 3e + 1, s) = 1.

For all e′ 6= 3e, 3e+1, 3n+2, where n ∈ ω, we let f(e′, 3e, s) = f(e′, 3e+1, s) =
0 and g(e′, 3e, s) ↑, g(e′, 3e + 1, s) ↑.

After the required s′ occurs, we define for all s ≥ s′: f(3e, 3e, s) = f(3e +
1, 3e + 1, s) = 0 and g(3e, 3e, s) = g(3e + 1, 3e + 1, s) = 0.

For all e′ 6= 3e, 3e+1, 3n+2, where n ∈ ω, we let f(e′, 3e, s) = sg[φe(i, 3e, s)],
f(e′, 3e+1, s) = sg[φe(j, 3e+1, s)], and g(e′, 3e, s) = ψe(i, 3e, s) g(e′, 3e+1, s) =
ψe(j, 3e + 1, s).

In this construction, we execute the same steps (with elements 3e and 3e+1
instead of elements 2e and 2e + 1, and the set ν(3e + 2) always contains only
one element 3e+2). The same argument shows that this is a family of Σ−1

a –sets
without Σ−1

a –computable Friedberg numbering.



Let b be a notation for the successor of |a|O. Construct a Σ−1
b –computable

numbering η of this family (again, we build a total computable function ϕ(n, x, s)
and a partial computable function ψ(n, x, s)).

For all n, x ∈ ω, let ϕ(n, x, 0) = 0 and ψ(n, x, 0) ↑.
Further in construction, we act for each e ∈ ω.
For all e′, s ∈ ω, let ϕ(2e, e′, s) = f(3e, e′, s) and ψ(2e, e′, s) = g(3e, e′, s).
We are waiting for a stage s′ such that f(3e, 3e, s′) = f(3e+1, 3e+1, s′) = 0.

While such s′ did not occur, for each stage s (0 < s < s′) and for all e′ ∈ ω we
put ϕ(2e+1, e′, s) = f(3e+1, e′, s) and ψ(2e+1, e′, s) = c, where c is a notation
for the successor of |g(3e + 1, e′, s)|O.

After the required s′ occurs, for all s ≥ s′ and for all e′ 6= 3x + 2, where
x is minimal natural number which was not used in previous steps we define
ϕ(2e + 1, e′, s) = 0, ψ(2e + 1, e′, s) = 0, ϕ(2e + 1, 3x + 2, s) = 1, and ψ(2e +
1, 3x + 2, s) = 0.

Comments to the construction.

1. The sets η(2e) and ν(3e) are the same, for all e.
2. While 3e + 1 and 3e + 2 remain in ν(3e + 1) and ν(3e + 2) respectively,

we construct the set η(2e + 1) so that it would be equal to ν(3e + 1). If at
some moment 3e + 1 and 3e + 2 leave the sets ν(3e + 1) and ν(3e + 2) then
these sets become equal. In this case we construct η(2e + 1) as a new set
ν(3x + 2) = {3x + 2}.
It follows from the construction that the numbering η is Σ−1

b –computable
and Friedberg.

References

1. S.S. Goncharov, S. Lempp, D.R. Solomon, Friedberg numberings of families of
n-computably enumerable sets. Algebra and Logic. 2002. – v. 41,N 2. – p. 143–154

2. Yu. L. Ershov, About one set hierarchy III (in Russian). Algebra and Logic, 1970,
v. 9, N 1, p. 34–51.

3. S.S. Goncharov, A. Sorbi, Computable numberings and nontrivial Rogers semilat-
tices. Algebra and Logic, 1997, v. 36, N 6, p. 621–641.

4. Yu. L. Ershov, Theory of numberings, in: Handbook of computability theory, ed.
E. R. Griffor, Amsterdam, North–Holland, 1999, 473–503.

5. M.M. Arslanov. Ershov hierarchy(in Russian), Kazan, 2007.


