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Abstract. We show, that any computable family of Σ−1
a –sets has posi-

tive and infinitely many computable numberings on some higher level of
Ershov hierarchy.

Key words: Ershov hierarchy, Rogers semilattices, computable num-
berings

1 Introduction

Study the cardinality and the structure of Roger semilattices of families of sets in
different hierarchies is one of the main questions in numberings theory. Here we
concentrate our interest on Roger semilattices in Ershov hierarchy. The results
in this area were obtained by various researchers, such as Badaev, Goncharov,
Lempp, Talasbaeva and others. We will especially mention two papers, that were,
in some way, a motivation of this work. First result ([1]) is proved by Goncharov,
Lempp, Solomon. They showed, that the family of all sets from finite level of
Ershov hierarchy has a Friedberg numbering. The second result([2]) is by Badaev
and Lempp and it is about a decomposition of the Rogers semilattice of a family
of d.c.e. sets.

There is well known result([5]), that the Rogers semilattice of any family
{A,B}, with A ⊂ B, A,B - computable enumerable sets, is infinite. Here we
construct some generalization of this fact onto Ershov hierarchy. After we prove,
that any computable family of sets from some level of Ershov hierarchy has a
positive numbering on some higher level. The connection of these results gives
our main result, that any computable family of sets from some level of Ershov
hierarchy has infinitely many nonequivalent computable numberings on some
higher level.

2 Main Definitions

Hereinafter we use Kleene ordinal notation system (O, <o). For every a ∈ O,
|a|O is the ordinal α whose O-notation is a. We also define a parity function
e(x): for all a ∈ O, e(a) = 1 if |a|O is even and e(a) = 0 if |a|O is odd.

We call a set from level |a|O of Ershov hierarchy([3]) a Σ−1a -set.



Definition 1. For all a ∈ O, a set A is a Σ−1a -set if there exist total computable
function f(x, s) and partial computable function g(x, s) such that for all x ∈ ω
the following conditions are satisfied:

1. A(x) = lim
s
f(x, s), f(x, 0) = 0

2. g(x, s) ↓→ g(x, s+ 1) ↓≤O g(x, s) <O a
3. f(x, s) 6= f(x, s+ 1)→ g(x, s+ 1) ↓6= g(x, s).

A pair 〈f, g〉 is called a Σ−1a -approximation of a set A.

We call a set A a Π−1a -set, if its complement A is Σ−1a -set. Due to previous
definition it is possible to say, that for such set f(x, 0) = 1.

Now we give definition of Σ−1a -computable numbering(in sense of [4]).

Definition 2. A numbering ν is said to be Σ−1a -computable if there exist a total
computable function f(n, x, s) and a partial computable function g(n, x, s) such
that for all n, x ∈ ω holds

1. νn(x) = lim
s
f(n, x, s), f(n, x, 0) = 0;

2. g(n, x, s) ↓→ g(n, x, s+ 1) ↓≤O g(n, x, s) <O a;
3. f(n, x, s) 6= f(n, x, s+ 1)→ g(n, x, s+ 1) ↓6= g(n, x, s).

A numbering ν is called positive if a set {< x, y > |νx = νy} is computable
enumerable and Friedberg if it enumerates the family of sets without repetitions.

Definition 3. A Σ−1a -approximation of a set A is called fair parity Σ−1a - ap-
proximation, if

1. f(x, s) = 0, then e(g(x, s)) = e(a) or g(x, s) is undefined
2. f(x, s) = 1, then e(g(x, s)) = 1− e(a)

Now we prove a useful technical result:

Lemma 1. if a set has Σ−1a -approximation then it has fair parity Σ−1a - approx-
imation.

Let pair 〈φ, ψ〉 be Σ−1a -approximation. We construct a pair 〈f, g〉.
f(x, s) = φ(x, s) for all x, s ∈ ω.

1. if ψ(x, s) is undefined then g(x, s) is also undefined
2. if ψ(x, s) is defined then

– ψ(x, s) = b, where a = 2b(|a|O is successor of |b|O)
– – if φ(x, s) = 0 then g(x, s) is undefined (there are no changes have been
made yet)
– – if φ(x, s) = 1 then g(x, s) = ψ(x, s)
– if e(ψ(x, s)) 6= e(a):
– – φ(x, s) = 0⇒ g(x, s) = c, where |c|O is the successor of |ψ(x, s)|O
– – φ(x, s) = 1⇒ g(x, s) = ψ(x, s)
– if e(ψ(x, s)) = e(a):
– – φ(x, s) = 1⇒ g(x, s) = c, where |c|O is the successor of |ψ(x, s)|O
– – φ(x, s) = 0⇒ g(x, s) = ψ(x, s)



Hereinafter ”+O” is a partial computable function satisfying on a, b ∈ O, |a+O
b|O = |a|O + |b|O.

It is easy to convert these rules into construction of partial computable func-
tion g. Proof is complete.

The similar result will be correct for Σ−1a -approximations of numberings.

3 Two Elements Families of Sets

Let S be the family of sets, S = {A,B}, where A is Σ−1a -set, B is Σ−1b -set, if
e(a) = 0 and Π−1b -set, if e(a) = 1. Let R be computably enumerable set. Define
a numbering νR:

νRn = B,n ∈ R
νRn = A,n /∈ R.

Lemma 2. A numbering νR is Σ−1b+Oa-computable.

Since A is Σ−1a , there is (due to definition and lemma) a fair parity Σ−1a -
approximation 〈φ, ψ〉, that define A. Since B is Σ−1b (or Π−1b ), there is Σ−1b (or
Π−1b )- approximation 〈τ, σ〉. To prove Σ−1a+Ob-computability of ν we should con-
struct a total computable function f(n, x, s) and a partial computable function
g(n, x, s).

Firstly, we redefine function σ(x, s):
We define σ′(x, 0) = b.
On the stage s + 1, if τ(x, s) 6= τ(x, s + 1) then σ′(x, s′) = σ(x, s′) for all

s′ > s+ 1, otherwise we define σ′(x, s) = b.
New function σ will be always defined.
Since R is computable enumerable, there is uniformly computable sequence

{Rs}s∈ω of finite sets R0 ⊆ R1 ⊆ R2 ⊆ ... such that holds R =
⋃
s∈ω

Rs.

Now we can define f and g:
For all x ∈ ω

s=0 f(n, x, 0) = φ(x, 0) g(n, x, 0) = b+O ψ(x, 0) for all n
s+1 If n ∈ Rs than f(n, x, s+ 1) = τ(x, s+ 1) g(n, x, s+ 1) = σ(x, s+ 1)

If n /∈ Rs than f(n, x, s+ 1) = φ(x, s+ 1) g(n, x, s+ 1) = b+O ψ(x, 0)

Verification

1. g(n, x, s) <O b+O a. This holds, since ψ(x, s+ 1) <O a.
2. g(n, x, s) ↓→ g(n, x, s+ 1) ↓. It works, since function σ is always defined.
3. f(n, x, s) 6= f(n, x, s + 1) → g(n, x, s + 1) ↓6= g(n, x, s). Here we have only

one “dangerous” moment: if at some stage s we change enumeration from
set A to set B, ψ(x, s) = 0 and σ(x, s+ 1) = b. Then we have two cases:
– if e(a) = 1 then φ(x, s) = 1 (since 〈φ, ψ〉 is fair parity) and τ(x, s+ 1) = 1
(since B is Π−1b ) and there are no changes
– if e(a) = 0 then φ(x, s) = 0 (since 〈φ, ψ〉 is fair parity) and τ(x, s+ 1) = 0
(since B is Σ−1b ) and there are also no changes.



Lemma is complete.
It is easy to see, that for any computable enumerable sets R,Q

R ≤m Q⇔ νR ≤ νQ

And since there are infinitely many c.e. m-degrees, we have

Theorem 1. Let S be the family of sets, S = {A,B}, where A is Σ−1a -set, B
is Σ−1b -set, if e(a) = 0 and Π−1b -set, if e(a) = 1. Then there are infinitely many
nonequivalent Σ−1b+Oa-computable numberings of family S.

Corollary 1. Any family S = {A,B} of Σ−1a -sets has infinitely many nonequiv-
alent Σ−1c -computable numberings, where c = a+O a if e(a) = 0 and c = 2a+Oa

if e(a) = 1.

For e(a) = 0 νR from Lemma 2 will be a+O a.
For e(a) = 1 νR will be a +O a1, where |a1|O is successor of |a|O. It works,

since Σ−1a ⊂ Σ−1a1
and e(a1) = 0. And a+O c = 2a+Oa.

4 Positive numbering

Goncharov, Lempp and Solomon in [1] have shown the existence of Σ−1n - com-
putable Friedberg numbering of the family of all Σ−1n -sets has a , n is natural
number. We use this construction with some minor modifications to show, that

Theorem 2. Let S be Σ−1a -computable family of sets and there is B ∈ S – Σ−1b -
set if e(a) = 0(Π−1b -set if e(a) = 1), then S has a Σ−1b+Oa-computable positive
numbering.

Since S is Σ−1a -computable, there is Σ−1a -computable numbering µ and let 〈φ, ψ〉
be its fair parity approximation. Let 〈τ, σ〉 be Σ−1b -(or Π−1b -) approximation of
set B. We construct a Σ−1b+Oa-computable numbering ν by giving its approxi-
mation 〈f, g〉 and ∅′-partial computable function h(approximated by uniformly
partial computable functions hs in the sense that h(n) ↓= m if hs(n) = m for
cofinitely many s, and h(n) is undefined otherwise). We meet the following

Reqirements:

1. If µn = µ′n for some n′ < n then h(n) is undefined.
2. If µn 6= µ′n for all n′ < n then either h(n) is defined and µn = νh(n); or µn

is equal to set B, and there is m ∈ ω − range(h) such that µn = νm.
3. For any m 6∈ range(h), νm = B.

Construction.
Stage s = 0:
f(n, x, 0) = 0, g(n, x, 0) ↑ for all n, x ∈ ω.
h(0) = h0(0) = 0, and h0(n) ↑ for all n > 0.
M0 = ∅
Stage s+ 1:



s+1.1 If hs(n) is defined and for some n′ < n

φ(n′, x, s) = φ(n, x, s) for all x ∈ [0, hs(n) + 1],

then let hs+1(n) be undefined.
s+1.2 If hs(n) is defined, n > 0 and for some s′ < s and m ∈ range(hs′)\range(hs)

there is

f(m,x, s) = f(hs(n), x, s) for all x ∈ [0, hs(n) + 1],

then let hs+1(n) be undefined.
s+1.3 If hs(n) is defined but hs+1 is undefined, then for each such n(in increasing

order of n), set
f(hs(n), x, s′) = τ(x, s′), g(hs(n), x, s′) = σ(x, s′) for all s′ > s and x ∈ ω
Ms+1 = Ms

⋃
{hs(n)}

s+1.4 If hs(n) is undefined for n ≤ s, then for all such n (in increasing order of n)
let hs+1(n) be the least m not in

⋃
s′≤s

range(hs) and not equal to hs+1(n′)

for some n′ < n.
s+1.5 If hs+1(n) is defined then let f(hs+1(n), x, s + 1) = φ(n, x, s + 1), and

g(hs+1(n), x, s+ 1) = b+O ψ(n, x, s+ 1) for all x ∈ ω.
s+1.6 If hs+1(n) is defined then let hs+2(n) = hs+1(n)

Verification

1. If µn = µn′ for some n′ < n, then hs(n) is undefined for infinitely many s
by s+1.1.

2. If µn 6= µn′ for all n′ < n, then h(n) becomes undefined at most finitely
often. If h(n) becomes undefined by step s+1.2 infinitely often then µn = B
and µn = νm for some m.

3. This goes from s+1.4.

The same thoughts as in Theorem 1 prove, that ν is Σ−1b+Oa-computable num-
bering. Now we show, that ν is positive.

Let M =
⋃
s
Ms. M is the set of numbers n, where νn = B (it can be only

one such n not from M). The set M is computable enumerable and

νx = νy ⇔ (x = y)
∨

(x ∈M&y ∈M).

It is easy to see, that a set {〈x, y〉|νx = νy} is computable enumerable.
Theorem is complete.
The same corollaries as in Theorem 1 hold here.

5 Infinite Roger semilattices

Here we make some connections between Theorems 1 and 2. Let S be Σ−1a -
computable family and there are three different sets A,B,C ∈ S, A is Σ−1a -set
and B,C are Σ−1b -sets if e(a) = 0(Π−1b -sets if e(a) = 1). According to Theorem
2, we have Σ−1b+oa

-computable positive numbering ν of family S. Without loss of
generality, we assume that ν0 = A, ν1 = B and C is used like the set B from
Theorem 2. We define numberings µ and µR:



µn = νn+2

µR
n = B,n ∈ R

µR
n = A,n /∈ R,

where R – some computable enumerable set.
It is easy to see, that

µR ⊕ µ ≤ µQ ⊕ µ⇔ µR ≤ µQ

And µR⊕µ will beΣ−1b+oa
-computable numbering of family S. Due to Theorem

1 we have

Theorem 3. Let S be Σ−1a -computable family and there are three different sets
A,B,C ∈ S, A is Σ−1a -set and B,C are Σ−1b -sets if e(a) = 0(Π−1b -sets if e(a) =
1). Then there are infinitely many nonequivalent Σ−1b+Oa-computable numberings
of family S.

Corollary 2. For any Σ−1a -computable family S, |S| > 2, there are infinitely
many Σ−1c -computable nonequivalent numberings of family S, where c = a+O a
if e(a) = 0 and c = 2a+Oa if e(a) = 1.
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