1. N. Bazhenov, S. Ospichev, M. Yamaleev, Isomorphism types of Rogers semilattices in the analytical hierarchy, to appear arXiv

  2. S. Goncharov, S. Ospichev, D. Ponomaryov, D. Sviridenko, The expressiveness of looping terms in the semantic programming, Siberian Electronic Mathematical Reports, 2020, Vol.~17, pp. 380-394. arXiv DOI

  3. S. Ospichev, Friedberg numberings of families of partial computable functionals, Siberian Electronic Mathematical Reports,2019, Vol. 16, pp. 331-339 (in Russian) DOI

  4. N. Bazhenov, M. Mustafa, S. Ospichev, Bounded Reducibility for Computable Numberings, LNCS, 2019, Vol. 11558, pp. 96-107 DOI

  5. S. Ospichev, D. Ponomaryov, On the complexity of formulas in semantic programming, Siberian Electronic Mathematical Reports, 2018, Vol. 15, pp. 987-995 DOI

  6. S. Ospichev, Computable Families of Sets in the Ershov Hierarchy Without Principal Numberings, Journal of Mathematical Sciences, 2016, Vol.215, Issue 4, pp. 529-536 DOI

  7. S. Ospichev, Friedberg Numberings in the Ershov hierarchy, Algebra and Logic, 2015, v. 54, Issue 4, pp. 283-285 DOI

  8. S. Ospichev, Infinite family of $\Sigma_a^{-1 }$-sets with a unique computable numbering, Journal of Mathematical Sciences, 2013, Vol. 188, Issue 4, pp. 449-451. DOI

  9. S. Ospichev, Properties of numberings in various levels of the Ershov hierarchy, Journal of Mathematical Sciences, 2013, Vol. 188, Issue 4, pp. 441-448.DOI

  10. S. Ospichev, Families with Infinite Rogers Semilattices in Ershov Hierarchy, 7th Conference on Coputability in Europe, CiE 2011, booklet, Sofia, 2011, pdf

  11. S. Ospichev, Computable family of {$\Sigma^{-1}_a$}-sets without Friedberg numberings, 6th Conference on Computability in Europe, CiE 2010, booklet, Ponta Delgada, Azores, 2010, pp. 311-315. pdf